THE ANNOTATION OF THE PARTIAL GENOME OF BACTERIOPHAGE STAGNI WITH THE USE OF PROGRAMS DNA MASTER AND VIRTUAL MACHINE
Amber Elinsky, Christopher Harness, Jacob D. Kagey, Joshua Thomson*
*University of Detroit Mercy; Detroit, MI USA

The Siphoviridae mycobacteriophage *Stagni* was isolated and annotated from a soil sample using the principles and guidance of the HHMI SEA-Phage program. The SEA Phages program allows undergraduate students worldwide to get involved in the studies of genetics through the observation and annotation of bacteriophage genomes. The importance of this research lies in the attempt to combat multidrug resistant strains of bacteria. Since bacteriophage are a form of virus that targets bacteria cells specifically, the use of phage therapy is being considered to help combat the rise in antibiotic resistance. *Stagni*’s initial gene placement was predicted through the auto annotation program DNA Master after its structural data was received from University of Pittsburgh. Using additional information provided by coding files from the Glimmer and GeneMark programs as well as online BLAST databases (for comparisons to known proteins from other phage), we were able to check the predictions and placements made from DNA Master and Virtual Machine in order to reaffirm or modify the annotated gene. Out of the ninety sequenced genes picked up by DNA Master, forty-four were successfully annotated (from sections A and C), having genes modified and added into the program after comparisons with other research groups. Although the structures of *Stagni* have been determined, the functions of these proteins are currently unknown, opening up further explorations into other research opportunities such as the infections of other bacteria.

Introduction

- Mycobacteriophages are viruses that infect mycobacteria species
- *Stagni* is a lytic Siphoviridae mycobacteriophage (digests *M. smegmatis*), mycobacteriophage
- *Stagni* was isolated at Nankin Lake Livonia, MI
- Extracted DNA was sent for complete sequencing
- The genome from *Stagni* was broken into sections
 - Sections A and C were fully annotated
 - Section A included potential genes 1 through 16
- The goal was to fully annotate the genome of *Stagni*

Methods

- Searched for large gaps between genes in the DNA Master Frames
- Checked GLIMMER and GeneMark files for possible coding potential
- Inserted the gene as gp1.5 in DNA Master
- Ran an external BLAST of the given product
- Observed the Shine Dalgarno (SD) scores
- Compared the genome of *Stagni* to BLAST results using Phamerator

Results

- SSC: (199-432) Forward Strand
- CP: Includes all possible coding potential
- SD: Z Value: 2.295 Final Score: -4.787 (highest score) Kibler6/Karlin Medium
- SCS: Glimmer: does not call a gene GeneMark: does not call a gene LO: yes, longest open reading frame
- Gap: no predicted overlap, 22bp gap with gp2
- BLAST: BLAST Alignment 1:1 with several annotated proteins including Anubis_2 and Wooldri_2

Discussion

- The data provided by the external BLAST and Phamerator concludes that there was an unpredicted gene present (gene 1.5)
- The new gene discovery allows for a more complete phage database
- Unique phage discoveries can lead to more possible phage therapy on bacterial strains (as opposed to antibiotics)
- Future project: *In vitro* and *ex vivo* experimentation of *Stagni* genes

Acknowledgements

- Stephanie Conant and Joshua Thomson for instruction and assistance during original isolation of *Stagni*
- Jacob D. Kagey, Joshua Thomson, and C. Knight for instruction and assistance during the annotation process of the genome
- The University of Pittsburgh for full sequencing of the genome

Funding: This project was supported by the NIH ReBUILD grant and the HHMI SEA-Phage program.